

ESTABILIDADE DAS CONSTRUÇÕES III – RESISTÊNCIA DOS MATERIAIS E PROPRIEDADES

ALBERTO ALONSO LÁZARO
ALEXANDRE AUGUSTO MARTINS
KAREN NICOLLI RAMIREZ
RENATO RODRIGUES
SASQUIA HIZURU OBATA

[abril.2024]

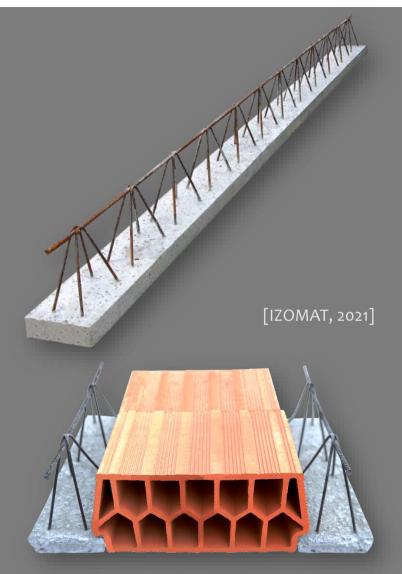
LAJES PRÉ-FABRICADAS

COM VIGOTAS

- TAMBÉM CONHECIDAS COMO LAJES PRÉ-MOLDADAS
- VIGOTAS (OU TRILHOS):
 - DESEMPENHO: ARMAÇÃO + APOIO PARA OS BLOCOS
 - ESPAÇAMENTOS USUAIS: 40,0cm 50,0cm 60,0cm
 - SE EM CONCRETO ARMADO, VÃOS ≤ 7,0m
 - SE EM CONCRETO PROTENDIDO, VÃOS ≅ 10,0m (OU MAIS)
- BLOCOS:
 - CERÂMICOS, DE ISOPOR OU DE CONCRETO
 - ALTURAS VARIÁVEIS, CONFORME VÃOS E CARREGAMENTOS
- CAPA DE CONCRETO:
 - ESPESSURA DEFINIDA PELO USO DA LAJE: 2,0cm 4,0cm 5,0cm

[KASPARY, 2021]

[KASPARY, 2021]



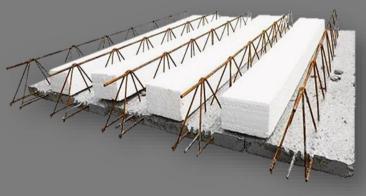
[KASPARY, 2021]

[SULFAR, 2021]

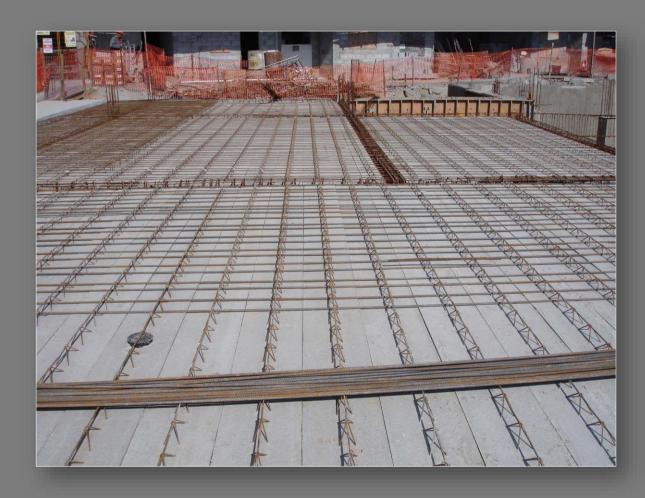
- TAMBÉM CHAMADAS DE LAJES PRÉ-MOLDADAS TRELIÇADAS
- VIGOTAS TRELIÇADAS (OU TRILHOS TRELIÇADOS):
 - ATUAM COMO ARMAÇÃO + APOIO PARA OS BLOCOS
 - ARMAÇÃO TRELIÇADA (h): 8,0cm 12,0cm 16,0cm 20,0cm
 - VÃOS ≅ 15,0m (OU MAIS, MEDIANTE CÁLCULOS ESPECÍFICOS)
- BLOCOS:
 - CERÂMICOS, DE ISOPOR OU DE CONCRETO
 - ALTURAS VARIÁVEIS, CONFORME VÃOS E CARREGAMENTOS
- CAPA DE CONCRETO:
 - ESPESSURA DEFINIDA PELO USO DA LAJE: 2,0cm 4,0cm 5,0cm

[CIOLA, 2021]

[LAJES SANTA ROSA, 2021]

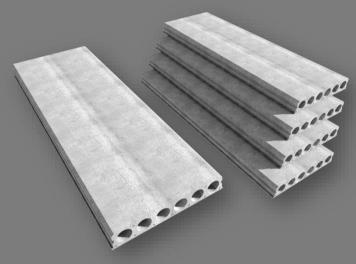

[PRE-MOLD RM, 2021]

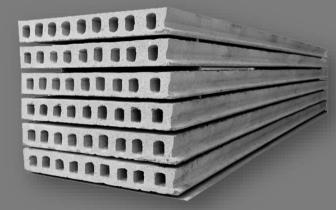
LAJES


- SISTEMA SEMELHANTE AO DAS LAJES PRÉ-MOLDADAS TRELIÇADAS
- SEGUNDO O PROJETO E A NECESSIDADE, PODE OU NÃO ADOTAR LAJOTAS CERÂMICAS, DE CONCRETO OU DE ISOPOR
- EM CASO NEGATIVO E JÁ DISPOSTA A ARMAÇÃO COMPLEMENTAR, SOBRE OS PAINÉIS TRELIÇADOS DISTRIBUÍDOS LADO A LADO É LANÇADO DIRETAMENTE O CONCRETO FRESCO
- BASES PRÉ-FABRICADAS COM LARGURAS MAIS USUAIS DE 25,0cm 33,0cm - 40,0cm - 100,0cm - 125,0cm
- ALTURAS DAS ARMAÇÕES TRELIÇADAS SÃO FUNÇÃO DOS VÃOS E DOS CARREGAMENTOS ESPERADOS, SENDO AS MAIS FREQUENTES (h): 6,0cm – 8,0cm – 12,0cm – 16,0cm – 20,0cm – 25,0cm – 30,0cm

[ANHANGUERA, 2021]

[FRONZA, 2021]




[PRE-MOLD RM, 2021]

[PRE-MOLD RM, 2021]

- PAINÉIS DE CONCRETO PROTENDIDO EM CUJO INTERIOR ESTÃO ALVÉOLOS LONGITUDINAIS RESPONSÁVEIS PELA REDUÇÃO DO PESO TOTAL DAS PEÇAS (E DA ESTRUTURA COMO UM TODO) SEM COMPROMETER A RESISTÊNCIA FINAL
- LAJES MOLDADAS EM CONCRETO PROTENDIDO DE ALTA RESISTÊNCIA, GERALMENTE NA LARGURA DE 124,5cm E EM ESPESSURAS E COMPRIMENTOS DEFINIDOS PELA SOBRECARGA TOTAL ESPERADA PARA A OBRA
- PODEM SER ADOTADAS EM SISTEMAS METÁLICOS, DE CONCRETO (ARMADO OU PROTENDIDO) OU EM ALVENARIAS ESTRUTURAIS

[TAG PRECAST, 2021]

[SDC MIX SUPPLY, 2021]

COM VIGOTAS

TRELIÇADAS

PAINÉIS TRELIÇADOS

ALVEOLARES

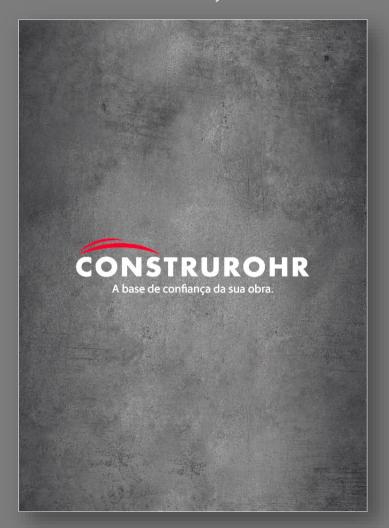
[COUNTRYMATERIALS, 2021]

[TDC GROEP, 2021]

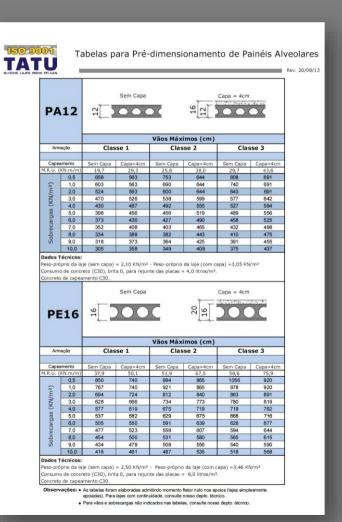
COM VIGOTAS

TRELIÇADAS

PAINÉIS TRELIÇADOS


ALVEOLARES

COMPARATIVO

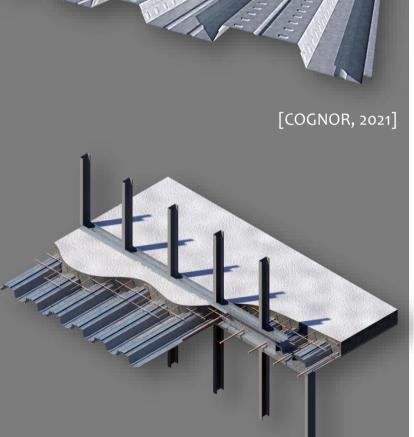

LAJES PRÉ-FABRICADAS

TIPO	VANTAGENS	DESVANTAGENS							
COM VIGOTAS	 BAIXO CUSTO MONTAGEM FÁCIL E RÁPIDA NÃO EXIGEM MÃO DE OBRA ESPECIALIZADA 	 QUALQUER SOBRECARGA PRECISA SER PREVISTA EM PROJETO (COMO ALVENARIAS E/OU OUTROS ELEMENTOS ARQUITETÔNICOS) FLEXIBILIDADE DE USO LIMITADA 							
TRELIÇADAS	 DISPENSAM O USO DE FÔRMAS E, SEGUNDO O VÃO VENCIDO, TAMBÉM NÃO USAM ESCORAMENTOS SE ADOTADO EPS COMO PREENCHIMENTO INTERNO, MELHORA-SE O CONFORTO AMBIENTAL TÉRMICO DA EDIFICAÇÃO 	 EM FUNÇÃO DO TIPO DE MATERIAL ADOTADO COMO PREENCHIMENTO, FUROS OU ABERTURAS NAS LAJES SÃO DIFÍCEIS DE FAZER NORMALMENTE AS SOLUÇÕES COM EPS SÃO INDICADAS APENAS PARA LAJES DE COBERTURA 							
PAINÉIS TRELIÇADOS	 SE COMPARADOS ÀS LAJES PRÉ-FABRICADAS COM VIGOTAS E/OU ÀS TRELIÇADAS: RESISTÊNCIA FINAL E VELOCIDADE DE MONTAGEM SUPERIORES MENOS CONSUMO DE MATERIAL PARA ESCORAMENTO E MADEIRAMENTO MENOR ÁREA DE ARMAZENAMENTO NO CANTEIRO DE OBRAS 	 SE COMPARADOS ÀS LAJES PRÉ-FABRICADAS COM VIGOTAS E/OU ÀS TRELIÇADAS: MAIOR CONSUMO DE CONCRETO LAJES MAIS PESADAS (DEPENDENDO DO CASO, PODEM IMPLICAR FUNDAÇÕES MAIORES E MAIS RESISTENTES) CUSTO MAIS ELEVADO 							
ALVEOLARES	 CAPACIDADE DE CARGA ELEVADA VENCEM GRANDES VÃOS (MÉDIA MÁXIMA: ATÉ 20,0m) MESMO COM BAIXAS ESPESSURAS DISPENSAM FÔRMAS E ESCORAMENTOS DENTRE TODOS OS MODELOS DE LAJES PRÉ-FABRICADAS, É O DE INSTALAÇÃO MAIS RÁPIDA 	 POR SEREM ESTRUTURAS PROTENDIDAS, O PREÇO POR METRO QUADRADO – SE CONSIDERADOS OS OUTROS TIPOS DE LAJES PRÉFABRICADAS – É SENSIVELMENTE MAIS ALTO POR CHEGAREM PRONTAS AO CANTEIRO DE OBRAS, É PRECISO PREVER ÁREAS DE MANOBRA PARA CAMINHÕES, GUINDASTES E/OU GRUAS NORMALMENTE FORNECIDAS APENAS NO FORMATO RETANGULAR 							

PARA INFORMAÇÕES MAIS DETALHADAS E ATUALIZADAS, CONSULTAR:



[CONSTRUROHR, 2021]

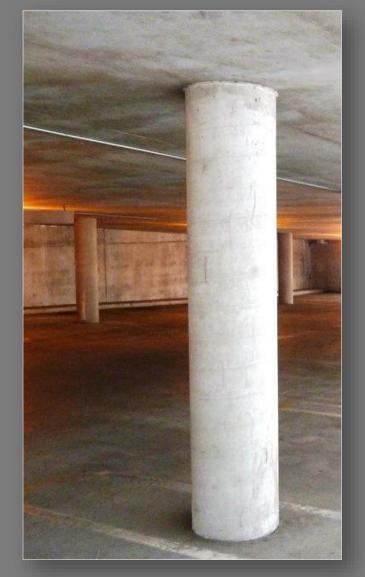

[LAJES ANHANGUERA, 2021]

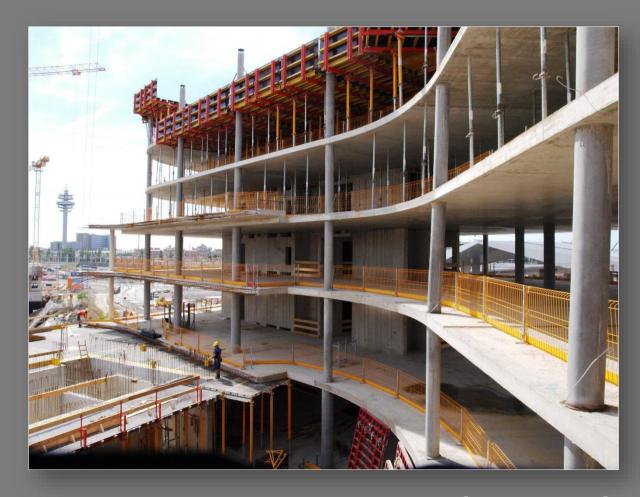
[TATU PREMOLDADOS, 2021]

STEEL-DECK

- A DEPENDER DA BIBLIOGRAFIA, PODEM SER CONSIDERADAS LAJES MOLDADAS IN LOCO OU LAJES PRÉ-FABRICADAS
- TRATA-SE DE UMA ESTRUTURA MISTA FORMADA POR UMA CHAPA VINCADA E RANHURADA DE AÇO SOBRE A QUAL É DISTRIBUÍDA UMA MALHA ANTI-FISSURAÇÃO E O CONCRETO FRESCO
- ESTE SISTEMA MOSTRA-SE DE FATO COMPETITIVO PARA VÃOS ENTRE 2,0m E 4,0m (POIS DISPENSA ESCORAMENTOS)
- AS ESPESSURAS FINAIS DAS LAJES STEEL-DECK DEPENDEM DOS VÃOS VENCIDOS E DOS MODELOS DE CHAPAS USADOS
- RECOMENDA-SE QUE A CAMADA DE CONCRETO ACIMA DAS
 NERVURAS MAIS ALTAS TENHA AO MENOS 50,0mm DE ESPESSURA

METEK, 2021




[METAL CONCEPT, 2021]

[FIBERMESH, 2021]

- TAMBÉM DENOMINADAS LAJES LISAS, LAJES PLANAS OU LAJES LISAS PLANAS
- MEDIANTE ARTIFÍCIOS ESTRUTURAIS INTERNOS AO PONTO DE CONTATO, AS LAJES DE CONCRETO PERMANECEM APOIADAS DIRETAMENTE POR SOBRE OS PILARES
- DISPENSAM O USO DE VIGAS
- PODEM SER EXECUTADAS EM CONCRETO ARMADO OU EM CONCRETO PROTENDIDO (RESULTADO MAIS EFICIENTE)
- IMPORTANTE: NEM TODA LAJE QUE EM UM PRIMEIRO MOMENTO PAREÇA TER SIDO EXECUTADA SEM VIGAS, REALMENTE O FOI!

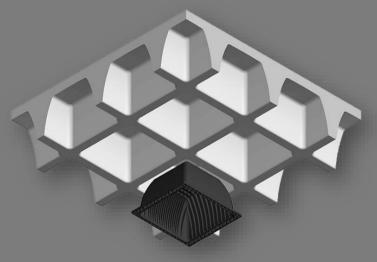
[ENGINEERS DAILY, 2021]

[CIVILSGUIDE, 2021]


[PROPLIST, 2021]

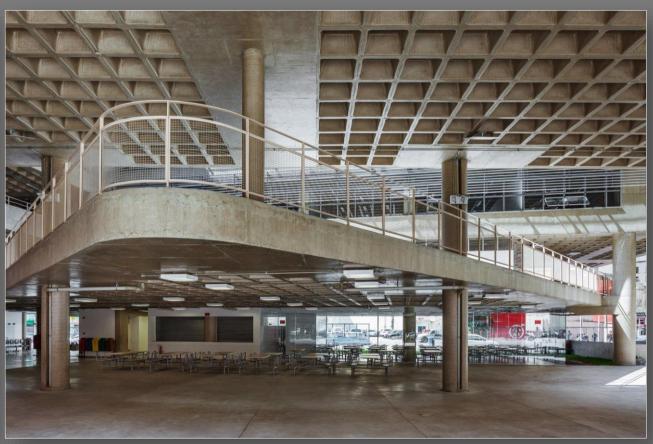
- POR NÃO TER VIGAS, AS LAJES COGUMELO FICAM SUJEITAS A ALTAS TENSÕES DE CISALHAMENTO NOS LOCAIS DE CONTATO COM OS PILARES (FENÔMENO CONHECIDO COMO "PUNÇÃO")
- A INTENSIDADE DA TENDÊNCIA AO PUCIONAMENTO PODE TRAZER
 SÉRIOS PROBLEMAS ESTRUTURAIS ÀS EDIFICAÇÕES
- PARA EVITÁ-LA (OU AO MENOS MINIMIZÁ-LA), É POSSÍVEL:
 - ELEVAR A ESPESSURA DAS LAJES (SOLUÇÃO ANTIECONÔMICA)
 - AUMENTAR A DIMENSÃO DAS SEÇÕES TRANSVERSAIS FINAIS DOS PILARES (GERANDO MAIOR INTERFERÊNCIA ESPACIAL)
 - EXECUTAR REFORÇOS PONTUAIS (ESPESSAMENTOS DAS LAJES
 NOS PONTOS DE TRANSIÇÃO PARA COM OS PILARES)

[ENGENEER DAILY, 2021]



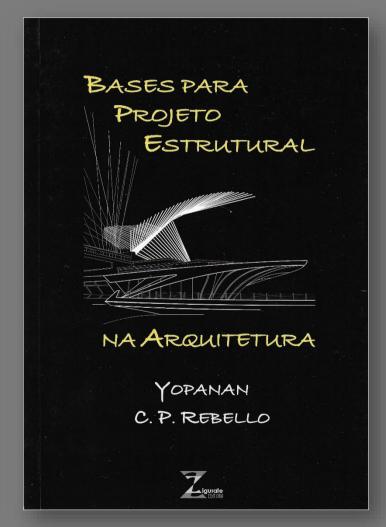
[ENGINEERING FEED, 2021]

[IBIMIX CONCRETO, 2021]


- SÃO TAMBÉM CHAMADAS DE LAJES NERVURADAS EM DUAS DIREÇÕES
- A CONFIGURAÇÃO ESTRUTURAL DESTE TIPO DE LAJE SE BASEIA NO FUNCIONAMENTO SIMULTÂNEO DAS NERVURAS E DAS LAJES NELAS APOIADAS. COM ISSO, OS ELEMENTOS RESULTANTES TRAZEM MENORES ESPESSURAS TOTAIS SE COMPARADOS À IDEIA DE LAJES APOIADAS SOBRE VIGAS EM SITUAÇÕES SIMILARES DE USO
- A ADOÇÃO DE LAJES NERVURADAS FAVORECE UMA MODULAÇÃO DE PILARES MAIS AMPLA QUE AQUELA FEITA PARA CONCRETO ARMADO (SENDO ENTÃO INDICADA PARA VÃOS A PARTIR DE 7,0m)
- BALANÇOS: SE LIMITADOS A 20,0% DO VÃO CENTRAL NÃO EXIGEM
 INCREMENTO NAS DIMENSÕES OU NA QUANTIDADE DE NERVURAS

[ATEX BRASIL, 2021]

[ATEX BRASIL, 2021]


[ARCHDAILY, 2021]

LAJES MOLDADAS IN LOCO		STEEL-DECK	COGUMELO INVERTIDO		OGUMELO APARENTE		GRELHA	COMPARATIVO		
LAJES MOLDADAS IN LOCO										
TIP	0	VANTAGENS				DESVANTAGENS				
STEEL-DE	ECK	 PARA VÃOS ≅ 4,0m, DISPENSA O USO DE ESCORAS (REDUZINDO GASTOS E/OU EVENTUAIS DESPERDÍCIOS DE MATERIAIS) INSTALAÇÃO SIMPLIFICADA E RAPIDEZ CONSTRUTIVA INTERAGE BEM COM INSTALAÇÕES ELÉTRICAS E HIDRÁULICAS PODEM SER INSTALADAS EM SISTEMAS METÁLICOS, DE CONCRETO (ARMADO OU PROTENDIDO) OU EM ALVENARIAS ESTRUTURAIS 				A FRAGILIDADE NO VENCIMENTO DE VÃOS ACIMA DE 4,0m PODE REQUERER A ADAPTAÇÃO DA MALHA ESTRUTURAL (REDUÇÃO DOS VÃOS ENTRE PILARES OU USO DE VIGAS SECUNDÁRIAS) PARA VÃOS ACIMA DE 4,0m DEIXAM DE SER COMPETITIVAS ECONOMICAMENTE, POIS ESCORAMENTOS SÃO OBRIGATÓRIOS SE APARENTES NA FACE INFERIOR, PODEM ENTRAR EM CONFLITO COM A SOLUÇÃO PLÁSTICA DADA AOS AMBIENTES				
COGUME		·	SAÇÃO DE MAIS AMPLIDÃO E ENHOS IRREGULARES E A PIL GIDAS		•	A INEXISTÊNCIA DE VIGAS ACARRETA INVESTIMENTO				
COGUME		 RESISTENTES QUE AS LAJ PASTILHAS E CAPITEIS NEGATIVOS DO PUNCIONA COGUMELOS APARENTES 	OS, SÃO MENOS ESPESSAS ES DE COGUMELO INVERTIDO AJUDAM A REDUZIR OS AMENTO SOBRE A ESTRUTUR PODEM CONTRIBUIR PARA A S A ESTRUTURA PERMANECE I	S EFEITOS A ESTÉTICA		FINANCEIRO ELEVADO DIRECIONADO À COMPENSAÇÃO ESTRUTURAL, OU SEJA, PASSA A OCORRER ALTO CONSUMO DE CONCRETO E DE AÇO PARA FAZER COM QUE ESTE TIPO DE LAJE RESPONDA ADEQUADAMENTE ÀS CARGAS DE SERVIÇO (ALGO QUE MUITAS VEZES CHEGA A INVIABILIZAR A SUA UTILIZAÇÃO)				
GRELHA		 CONSTRUÇÃO RACIONA ESTÉTICAS E ACÚSTICAS II REDUÇÃO NO USO DE AÇO 	O E NO CONSUMO DE CONCR ES FORMATOS E ADMITE	JALIDADES ETO	•	ACIMA DAC (ALGO QUE EM EDIFICA EXIGEM MÂ	INTOCADOS OS VÃOS, APE QUELAS ENCONTRADAS EM PRECISA SER LEVADO EM CO ÇÕES DE GABARITO LIMITAD ÃO DE OBRA QUALIFICADA E ARQUITETURA PREVÊ DEIXA	OUTROS TIPOS DE LAJE ONSIDERAÇÃO, QUANDO O) PARA EXECUÇÃO, SE O		

PARA INFORMAÇÕES MAIS DETALHADAS E ATUALIZADAS, CONSULTAR:

ESQUEMA SEQUENCIAL DE CARREGAMENTOS

E AINDA: ESTRUTURA DO TELHADO (QUANDO O CASO) + RESERVATÓRIO(S) D'ÁGUA SUPERIOR(ES)

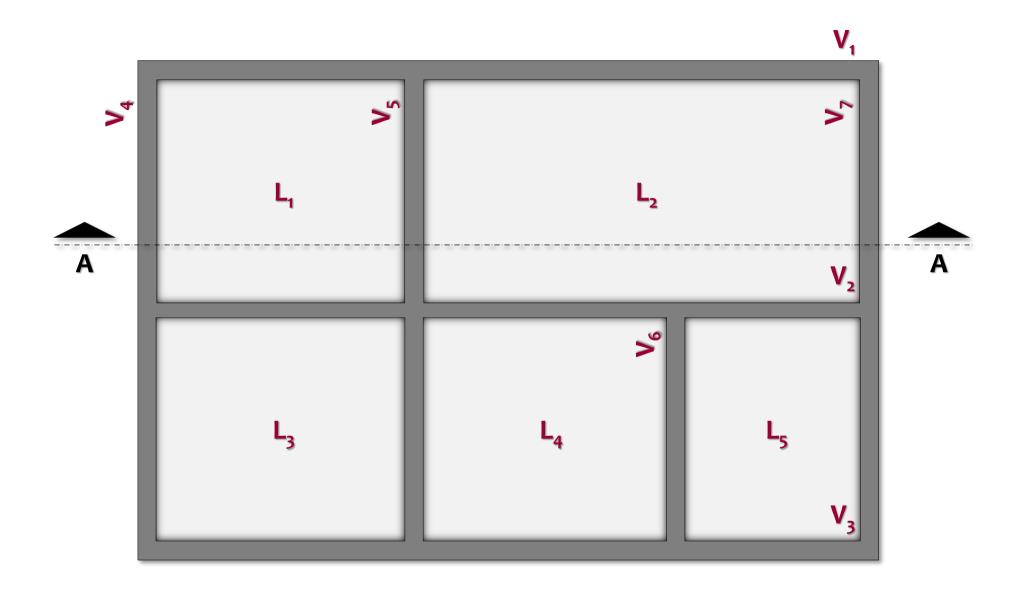
CONCEITUAÇÃO

- A DEPENDER DA BIBLIOGRAFIA, AS LAJES SÃO TAMBÉM CHAMADAS DE ELEMENTOS DE SUPERFÍCIE, OU DE PLACAS
- AS LAJES SÃO CLASSIFICADAS COMO ELEMENTOS PLANOS BIDIMENSIONAIS, OU SEJA,
 AQUELES NOS QUAIS AS DUAS DIMENSÕES PRINCIPAIS (O COMPRIMENTO E A LARGURA) SÃO
 BEM MAIORES QUE A TERCEIRA DIMENSÃO (A ESPESSURA)
- É DE RESPONSABILIDADE DIRETA DAS LAJES SUPORTAR A MAIOR PARTE DOS ESFORÇOS APLICADOS A UMA EDIFICAÇÃO, NORMALMENTE COMPOSTOS POR CAMADAS DE REGULARIZAÇÃO, PISOS, PAREDES E OS MAIS VARIADOS TIPOS DE CARREGAMENTOS DE SERVIÇO

CONCEITUAÇÃO

 LAJES COM BORDAS LIVRES (SEM APOIOS) E LAJES LISAS (COM COGUMELOS EMBUTIDOS OU APARENTES) SÃO TAMBÉM VIÁVEIS, MAS POR SEREM CASOS PARTICULARES, REQUEREM CÁLCULOS ESPECÍFICOS FEITOS COM BASE EM DIFERENTES CRITÉRIOS ESTRUTURAIS E COMPORTAMENTAIS

- LAJES MACIÇAS EM CONCRETO
 - AS "LAJES TRADICIONAIS" FEITAS *IN LOCO* EM CONCRETO ARMADO SÃO MOLDADAS JUNTAMENTE COM AS VIGAS QUE LHES DÃO SUPORTE
 - CONSIDERANDO QUE, AO RECEBER UM DETERMINADO CARREGAMENTO AS LAJES TENDEM A
 SE DEFORMAR, O CÁLCULO DIMENSIONAL ASSUME QUE AS VIGAS NÃO POSSUEM CONDIÇÕES
 FÍSICAS DE IMPEDIR TOTALMENTE A DEFORMAÇÃO DAS LAJES LOCALIZADAS DIRETAMENTE
 SOBRE ELAS


CONCEITUAÇÃO

- SE AS LAJES FOSSEM MOLDADAS SEPARADAMENTE UMAS EM RELAÇÃO ÀS OUTRAS, ENTÃO, PRATICAMENTE NÃO HAVERIA INFLUÊNCIA MÚTUA ENTRE ELAS, O QUE PODERIA EXIGIR LAJES MAIS ESPESSAS, COM MAIOR CONSUMO DE MATERIAL E, CONSEQUENTEMENTE, DE CUSTO MAIS ELEVADO!
- NA PRÁTICA, A CONEXÃO MÚTUA ENTRE LAJES TRAZ MAIS ESTABILIDADE E EFICIÊNCIA AOS EDIFÍCIOS

CONCLUSÃO:

 DUAS LAJES CONTÍGUAS, SE MOLDADAS IN LOCO EM CONCRETO ARMADO, SE INTERENGASTAM NOS SEUS LADOS EM COMUM

ESQUEMAS DO TRABALHO DE DEFORMAÇÃO DAS LAJES L1 + L2:

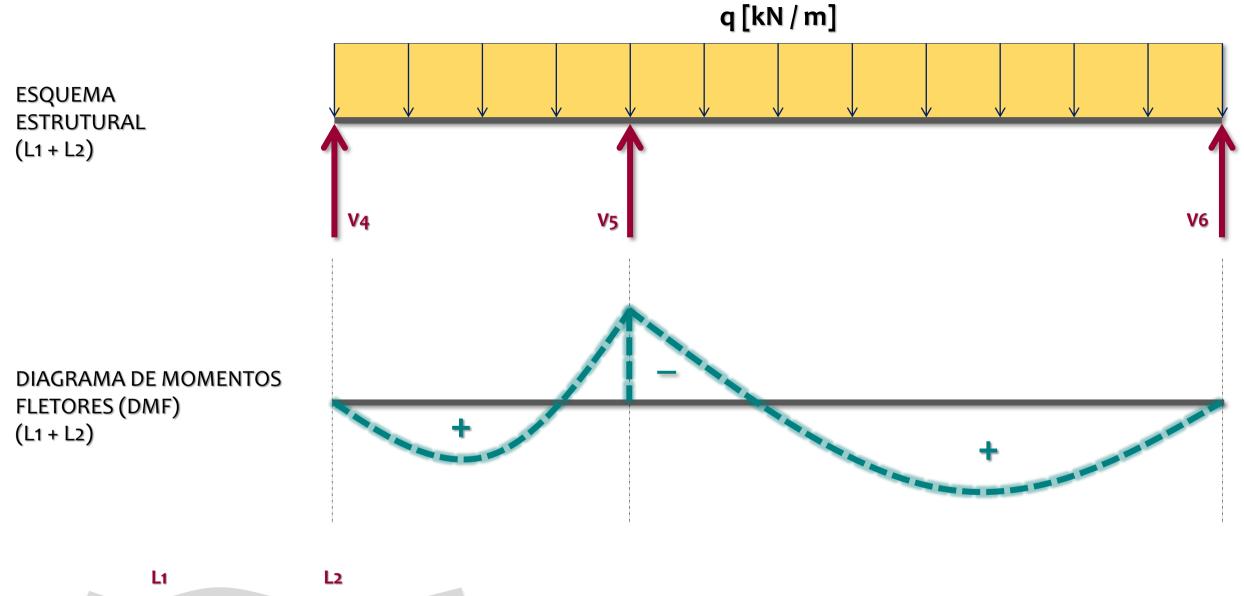
ESQUEMA ESTRUTURAL ASSOCIADO AO CÁLCULO DE LAJES L-1 + L2:

[a partir de BOTELHO e MARCHETTI, 2019]

CORTE ESQUEMÁTICO DAS LAJES L1 + L2

L1 L2
V1 V2 V3

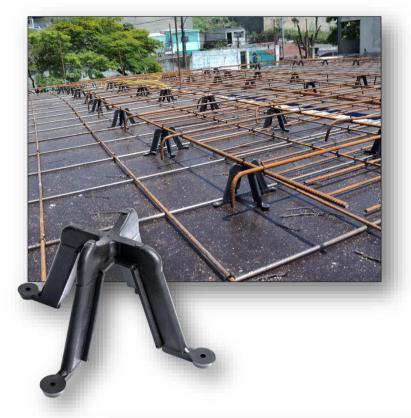
ESQUEMA DE TRABALHO DA ESTRUTURA, EM FUNÇÃO DAS CARGAS APLICADAS E DO PESO PRÓPRIO TOTAL V1 V2 V3


TRAÇÃO COMPRESSÃO

REGIÕES VIRTUAIS DE TRABALHO À TRAÇÃO E À COMPRESSÃO

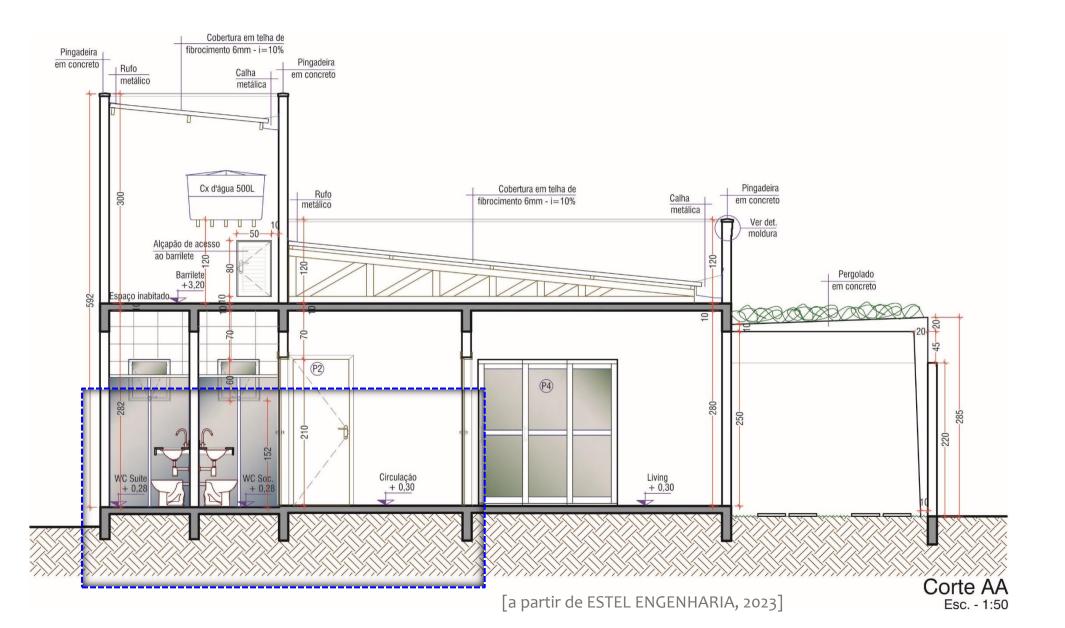
	ARMADI	IRA N	VEC ATIVA	NO APOIO	COMPARTII	HADO
_	ANMADU		$\mathbf{N} \mathbf{L} \mathbf{U} \mathbf{A} \mathbf{H} \mathbf{V} \mathbf{A}$	INO AFOIO		

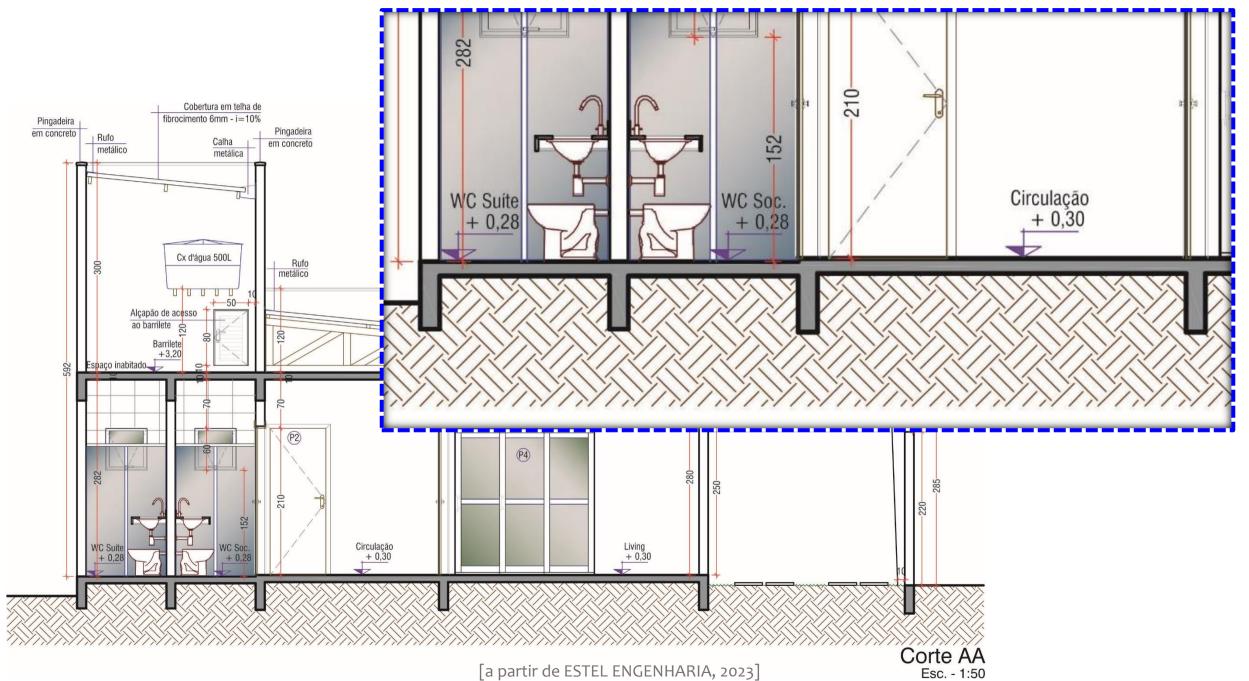
 EM FUNÇÃO DA OCORRÊNCIA DE MOMENTO FLETOR NEGATIVO NO APOIO COMUM ÀS DUAS LAJES CONTÍGUAS, O CÁLCULO ESTRUTURAL DEVE PREVER ARMADURAS NEGATIVAS CONECTANDO ESSES TRÊS ELEMENTOS



RESUMINDO ...

CONSIDERANDO QUE NOS CENTROS DOS VÃOS OCORREM MOMENTOS FLETORES POSITIVOS E NOS APOIOS INTERMEDIÁRIOS MOMENTOS FLETORES NEGATIVOS, E LEMBRANDO TAMBÉM QUE O CONCRETO NÃO TRABALHA BEM À TRAÇÃO, NAS LAJES CONTÍGUAS, ALÉM DE LANÇAR AÇO NAS ÁREAS CENTRAIS DAS LAJES, DEVE-SE PREVER TAMBÉM UM CONJUNTO DE ARMADURAS SUPERIORES ESPECÍFICO PARA OS APOIOS INTERMEDIÁRIOS

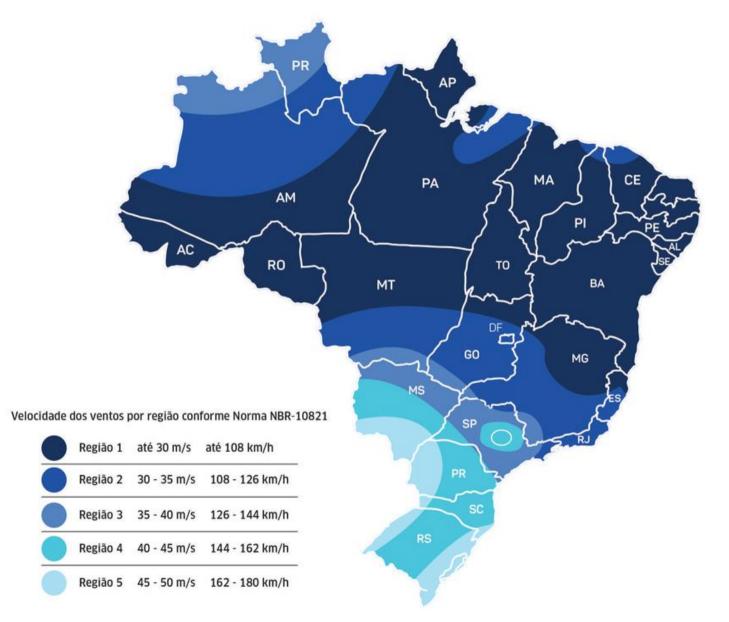





ENGASTE

IMPORTANTE:

- O ENGASTE PERFEITO SURGE NO CASO DE LAJES EM BALANÇO, COMO MARQUISES,
 VARANDAS, DENTRE OUTRAS. É CONSIDERADO TAMBÉM NAS BORDAS EM COMUM, ONDE
 HÁ CONTINUIDADE ENTRE DUAS LAJES VIZINHAS
- O ENGASTAMENTO NOS APOIOS DAS LAJES CONTÍGUAS DE MESMA ESPESSURA NÃO ACONTECE SE ALGUMA DELAS FOR REBAIXADA. EM CASOS ASSIM, AMBAS SE COMPORTAM COMO LIVREMENTE APOIADAS



CONSIDERAÇÕES GERAIS

NOS EDIFÍCIOS, AS LAJES TRABALHAM COMO DIAFRAGMAS RÍGIDOS (ELEMENTOS DE RIGIDEZ INFINITA NO SEU PRÓPRIO PLANO), AJUDANDO A DISTRIBUIR OS ESFORÇOS HORIZONTAIS DO VENTO PARA AS ESTRUTURAS DE CONTRAVENTAMENTO (PÓRTICOS, PILARES-PAREDE, NÚCLEOS DE RIGIDEZ), RESPONSÁVEIS POR PARCELA SIGNIFICATIVA DA ESTABILIDADE GLOBAL ESTRUTURAL

VENTO (W)

- AÇÕES ATUANTES NAS LAJES
 - NORMAS: NBR 6118:2023 + VERSÃO CORRIGIDA 2:2024 (PROJETO DE ESTRUTURAS DE CONCRETO);

 NBR 8681:2003 + VERSÃO CORRIGIDA 1:2004 (AÇÕES E SEGURANÇA NAS ESTRUTURAS –

 PROCEDIMENTO); NBR 6120:2019 + VERSÃO CORRIGIDA 1:2019 (AÇÕES PARA O CÁLCULO DE ESTRUTURAS DE EDIFICAÇÕES); E NBR 6123:2023 (FORÇAS DEVIDAS AO VENTO EM EDIFICAÇÕES)
 - SITUAÇÕES ESPECÍFICAS DE CADA PROJETO TAMBÉM DEVEM SER AVALIADAS. PARA CASOS NOS QUAIS AS NORMAS BRASILEIRAS NÃO TRATAM DE CARGAS ESPECIAIS, É COMUM RECORRER ÀS REGULAMENTAÇÕES ESTRANGEIRAS, À BIBLIOGRAFIA ESPECIALIZADA, AOS FABRICANTES DE EQUIPAMENTOS, ...
 - CARREGAMENTOS PRINCIPAIS: AÇÕES PERMANENTES + AÇÕES VARIÁVEIS

COMO CITAR ESTE MATERIAL

MARTINS, A. A.

LAJES EM CONCRETO ARMADO MOLDADO IN LOCO: CONCEITOS BÁSICOS

MATERIAL DIDÁTICO. SÃO PAULO: FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE PRESBITERIANA MACKENZIE, ABRIL DE 2024.

DISPONÍVEL POR MEIO DIGITAL DURANTE A AULA DE ESTABILIDADE DAS CONSTRUÇÕES III – RESISTÊNCIA DOS MATERIAIS E PROPRIEDADES, MINISTRADA PELOS PROFESSORES: SASQUIA HIZURU OBATA, KAREN NICOLLI RAMIREZ, ALBERTO ALONSO LÁZARO, RENATO RODRIGUES E ALEXANDRE AUGUSTO MARTINS, EM ABRIL.2024.

REFERÊNCIAS TEXTUAIS

BASTOS, PAULO SÉRGIO. LAJES DE CONCRETO ARMADO. UNIVERSIDADE ESTADUAL PAULISTA – DEPARTAMENTO DE ENGENHARIA CIVIL. BAURU, 2021. DISPONÍVEL EM: https://wwwp.feb.unesp.br/pbastos/concreto1/Lajes.pdf. ACESSO EM: 17.ago.2023.

BOTELHO, MANOEL H. CAMPOS; MARCHETTI, OSVALDEMAR. CONCRETO ARMADO EU TE AMO. SÃO PAULO: EDGARD BLUCHER, 2006.

MEIRELLES, CÉLIA R. M. SISTEMAS ESTRUTURAIS – PRÉ-DIMENSIONAMENTO (NOTAS DE AULA). FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE PRESBITERIANA MACKENZIE, 2008.

NBR 6118:2014 - PROJETO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO. DISPONÍVEL EM: https://www.abntcatalogo.com.br/norma.aspx?ID=317027. ACESSO EM: 28.mar.2021.

NBR 6120:2019 – AÇÕES PARA O CÁLCULO DE ESTRUTURAS DE EDIFICAÇÕES. DISPONÍVEL EM: https://www.abntcatalogo.com.br/norma.aspx?ID=426721. ACESSO EM: 28.mar.2021.

NBR 8681:2004 - AÇÕES E SEGURANÇA NAS ESTRUTURAS - PROCEDIMENTO. DISPONÍVEL EM: https://www.abntcatalogo.com.br/norma.aspx?ID=991. ACESSO EM: 28.mar.2021

REBELLO, YOPANAN CONRADO. A CONCEPÇÃO ESTRUTURAL E A ARQUITETURA. SÃO PAULO: EDITORA ZIGURATE, 2011.a.

REBELLO, YOPANAN CONRADO. BASES PARA PROJETO ESTRUTURAL NA ARQUITETURA. SÃO PAULO: EDITORA ZIGURATE, 2011.b.

REBELLO, YOPANAN CONRADO. **ESTRUTURAS DE AÇO, CONCRETO E MADEIRA – ATENDIMENTO DA EXPECTATIVA DIMENSIONAL.** SÃO PAULO: EDITORA ZIGURATE, 2011.c.

ESTABILIDADE DAS CONSTRUÇÕES III – RESISTÊNCIA DOS MATERIAIS E PROPRIEDADES

ALBERTO ALONSO LÁZARO
ALEXANDRE AUGUSTO MARTINS
KAREN NICOLLI RAMIREZ
RENATO RODRIGUES
SASQUIA HIZURU OBATA

[abril.2024]